Given an iterative problem where $x_{k+1} \leftarrow f(x_k)$, then under certain conditions, we may be able to find a relaxation parameter ω to speed up convergence. Thus, having calculated x_{k+1} , we then update the value with

$$x_{k+1} \leftarrow \omega x_{k+1} + (1 - \omega) x_k$$

In specific cases (e.g., Newton's method), we may calculate Δx_k so that $x_{k+1} \leftarrow x_k + \Delta x_k$, in which case, applying overrelaxation amounts to calculating

$$x_{k+1} \leftarrow x_k + \omega \Delta x_k$$

Now, specific to the Gauss-Seidel method, given a system of *n* linear equations in *n* unknowns $A\mathbf{u} = \mathbf{v}$, we will use iteration to approximate a solution to this system of linear equations. We will assume that *A* is either strictly diagonally dominant or symmetric and positive definite, in which case, we are assured that all the diagonal entries are non-zero.

Parameters:

ω	A relaxation parameter ω to speed up convergence.
\mathcal{E}_{step}	The maximum step size allowed before we consider the method to have converged.
Ν	The maximum number of iterations.

- 1. Define A_{diag} to be the $n \times n$ matrix of the diagonal entries of A and calculate the inverse A_{diag}^{-1} of this matrix, which is that matrix with the reciprocals of each of the diagonal entries of A_{diag} .
- 2. Define A_{off} to be the $n \times n$ matrix of the off-diagonal entries of A.
- 3. Let $\mathbf{u}_0 \leftarrow A_{\text{diag}}^{-1} \mathbf{v}$ and $k \leftarrow 0$.
- 4. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 5. Set $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_k$.
- 6. For i going from 1 to n,
 - a. Update the *i*th entry of $(\mathbf{u}_{k+1})_i \leftarrow (1-\omega)(\mathbf{u}_{k+1})_i + \omega (A_{\text{diag}}^{-1})_{i,i} (\mathbf{v}_i (A_{\text{off}})_{i,\dots} \mathbf{u}_{k+1})$ where $(A_{\text{off}})_{i,\dots}$ is the *i*th row of A_{off} .
- 7. If $\|\mathbf{u}_{k+1} \mathbf{u}_{k}\|_{2} < \varepsilon_{\text{step}}$, return \mathbf{u}_{k+1} .
- 8. Increment *k* and return to Step 4.

Note that if A is a sparse matrix (most entries are zero and stored using a sparse-matrix representation), then it is reasonable to calculate $A_{diag}^{-1}A_{off}$ first and then replace Step 6a by:

6a'. Update the *i*th entry of $(\mathbf{u}_{k+1})_i \leftarrow (1-\omega)(\mathbf{u}_{k+1})_i + \omega \left(\mathbf{u}_{0,i} - (A_{\text{diag}}^{-1}A_{\text{off}})_{i,\dots}\mathbf{u}_{k+1}\right)$ where $(A_{\text{diag}}^{-1}A_{\text{off}})_{i,\dots}$ is the *i*th

row of $A_{\text{diag}}^{-1}A_{\text{off}}$.