In a nutshell: The method of successive over-relaxation

Given an iterative problem where $x_{k+1} \leftarrow f\left(x_{k}\right)$, then under certain conditions, we may be able to find a relaxation parameter ω to speed up convergence. Thus, having calculated x_{k+1}, we then update the value with

$$
x_{k+1} \leftarrow \omega x_{k+1}+(1-\omega) x_{k}
$$

In specific cases (e.g., Newton's method), we may calculate Δx_{k} so that $x_{k+1} \leftarrow x_{k}+\Delta x_{k}$, in which case, applying overrelaxation amounts to calculating

$$
x_{k+1} \leftarrow x_{k}+\omega \Delta x_{k}
$$

Now, specific to the Gauss-Seidel method, given a system of n linear equations in n unknowns $A \mathbf{u}=\mathbf{v}$, we will use iteration to approximate a solution to this system of linear equations. We will assume that A is either strictly diagonally dominant or symmetric and positive definite, in which case, we are assured that all the diagonal entries are non-zero.

Parameters:
$\omega \quad$ A relaxation parameter ω to speed up convergence.
$\varepsilon_{\text {step }} \quad$ The maximum step size allowed before we consider the method to have converged.
$N \quad$ The maximum number of iterations.

1. Define $A_{\text {diag }}$ to be the $n \times n$ matrix of the diagonal entries of A and calculate the inverse $A_{\text {diag }}^{-1}$ of this matrix, which is that matrix with the reciprocals of each of the diagonal entries of $A_{\text {diag. }}$.
2. Define $A_{\text {off }}$ to be the $n \times n$ matrix of the off-diagonal entries of A.
3. Let $\mathbf{u}_{0} \leftarrow A_{\text {diag }}^{-1} \mathbf{v}$ and $k \leftarrow 0$.
4. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
5. Set $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_{k}$.
6. For i going from 1 to n,
a. Update the $i^{\text {th }}$ entry of $\left(\mathbf{u}_{k+1}\right)_{i} \leftarrow(1-\omega)\left(\mathbf{u}_{k+1}\right)_{i}+\omega\left(A_{\text {diag }}^{-1}\right)_{i, i}\left(\mathbf{v}_{i}-\left(A_{\text {off }}\right)_{i, \ldots} \mathbf{u}_{k+1}\right)$ where $\left(A_{\text {off }}\right)_{i, \ldots}$ is the $i^{\text {th }}$ row of $A_{\text {off }}$.
7. If $\left\|\mathbf{u}_{k+1}-\mathbf{u}_{k}\right\|_{2}<\varepsilon_{\text {step }}$, return \mathbf{u}_{k+1}.
8. Increment k and return to Step 4.

Note that if A is a sparse matrix (most entries are zero and stored using a sparse-matrix representation), then it is reasonable to calculate $A_{\text {diag }}^{-1} A_{\text {off }}$ first and then replace Step $6 a$ by:

6a'. Update the $i^{\text {th }}$ entry of $\left(\mathbf{u}_{k+1}\right)_{i} \leftarrow(1-\omega)\left(\mathbf{u}_{k+1}\right)_{i}+\omega\left(\mathbf{u}_{0, i}-\left(A_{\text {diag }}^{-1} A_{\text {off }}\right)_{i, \ldots} \mathbf{u}_{k+1}\right)$ where $\left(A_{\text {diag }}^{-1} A_{\text {off }}\right)_{i, \ldots}$ is the $i^{\text {th }}$ row of $A_{\text {diag }}^{-1} A_{\text {off }}$.

